Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicon ; 184: 68-77, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32526239

RESUMO

Cobra venom factor (CVF) is the complement-activating protein in cobra venom. CVF is a structural and functional analog of complement component C3. CVF, like C3b, forms a convertase with factor B. This bimolecular complex CVF, Bb is an enzyme that cleaves C3 and C5. However, CVF, Bb exhibits significantly different functional properties from C3b,Bb. Whereas both, CVF, Bb and C3b, Bb exhibit spontaneous decay-dissociation into the respective subunits, thereby eliminating the enzymatic activity, the CVF, Bb convertase is physico-chemically far more stable, decaying with a half-life that is more than two orders of magnitude slower than that of C3b,Bb. In addition, CVF, Bb is completely resistant to inactivation by Factors H and I. These two properties of CVF, Bb allow continuous activation of C3 and C5, and complement depletion in serum. In order to understand the structural basis for the physico-chemical stability of CVF,Bb, we have created recombinant hybrid proteins of CVF and human C3, based on structural differences between CVF and human C3b in the C-terminal C345C domain. Here we describe three human C3/CVF hybrid proteins which differ in only one, two, or five amino acid residues from earlier described hybrid proteins. In all three cases, the hybrid proteins containing CVF residues form more stable convertases, and exhibit stronger complement-depletion activity than hybrid proteins with human C3 residues. Three bonds between CVF residues and Factor Bb residues could be identified by crystallographic modeling that contribute to the greater stability of the convertases.


Assuntos
Convertases de Complemento C3-C5/química , Fator B do Complemento/química , Venenos Elapídicos/química , Animais , Complemento C3 , Fator H do Complemento , Humanos , Proteínas Recombinantes de Fusão
2.
Synth Biol (Oxf) ; 4(1): ysz018, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31355344

RESUMO

Safer and more efficient methods for directing therapeutic genes to specific sequences could increase the repertoire of treatable conditions. Many current approaches act passively, first initiating a double-stranded break, then relying on host repair to uptake donor DNA. Alternatively, we delivered an actively integrating transposase to the target sequence to initiate gene insertion. We fused the hyperactive piggyBac transposase to the highly specific, catalytically dead SpCas9-HF1 (dCas9) and designed guide RNAs (gRNAs) to the CCR5 safe harbor sequence. We introduced mutations to the native DNA-binding domain of piggyBac to reduce non-specific binding of the transposase and cause the fusion protein to favor binding by dCas9. This strategy enabled us, for the first time, to direct transposition to the genome using RNA. We showed that increasing the number of gRNAs improved targeting efficiency. Interestingly, over half of the recovered insertions were found at a single TTAA hotspot. We also found that the fusion increased the error rate at the genome-transposon junction. We isolated clonal cell lines containing a single insertion at CCR5 and demonstrated long-term expression from this locus. These vectors expand the utility of the piggyBac system for applications in targeted gene addition for biomedical research and gene therapy.

3.
Toxicon ; 167: 106-116, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31207349

RESUMO

Cobra venom factor (CVF) is the complement-activating protein in cobra venom. CVF is a structural and functional analog of complement component C3. CVF, like C3b, forms a convertase with factor B. This bimolecular complex CVF,Bb is an enzyme that cleaves C3 and C5. However, CVF,Bb exhibits significantly different functional properties from C3b,Bb. The CVF,Bb convertase is physico-chemically very stable, and completely resistant to an activation by Factors H and I. These two properties, in contrast to C3b,Bb, allow continuous activation of C3 and C5, and complement depletion in serum. In order to understand the structural basis for the functional differences between CVF and C3, we have created several hybrid proteins of CVF and human C3. Here we report that replacing the C-terminal 168 amino acid residues of human C3 with the corresponding residues from CVF results in a hybrid protein (HC3-1496) which is essentially a human C3 derivative exhibiting the functional properties of CVF. This result demonstrates that the important structures for the CVF-specific functions reside within the C-terminal 168 amino acid residues of CVF. We further demonstrate that reverting the 46 C-terminal CVF residues of HC3-1496 to human C3 sequence results in a hybrid protein (HC3-1496/1617) that exhibits a physico-chemically unstable convertase with only residual complement depleting activity. This result demonstrates that most, but not all, structural requirements for CVF activity reside within the 46 C-terminal amino acid residues. We also investigated the potential role of position 1633, which is an acidic residue in human C3 (glutamic acid) but a basic amino acid residue (histidine) in CVF. However, the charge at position 1633 appears to be of no functional relevance. Exchanging the neutral amino acids present in CVF at positions 1499 and 1501 with the two charged amino acids at these positions in human C3 (aspartic acid and lysine) resulted in a hybrid protein that exhibited significantly slower convertase formation although both binding to Factor B and C3 cleavage was not affected, demonstrating that the charged amino acid residues at these two positions interfere with the formation of the convertase. In conclusion, our work demonstrates that hybrid proteins of human C3 and CVF present valuable tools to identify functionally important amino acid residues in CVF.


Assuntos
Complemento C3/química , Venenos Elapídicos/química , Sequência de Aminoácidos , Humanos , Proteínas Recombinantes de Fusão/química , Análise de Sequência de Proteína , Relação Estrutura-Atividade
4.
Mol Immunol ; 97: 1-7, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29525557

RESUMO

Cobra venom factor (CVF) is the complement-activating protein in cobra venom. Humanized CVF (hCVF) is a human C3 derivative where the C-terminal 168 amino acid residues were replaced with the homologous sequence from CVF. hCVF has been shown in multiple models of disease with complement pathology to be a promising therapeutic agent, with no observed adverse effects. Here we describe the antibody response to hCVF in two different strains of mice. hCVF was able to repeatedly decomplement the mice after four injections in weekly intervals, demonstrating the absence of a neutralizing antibody response. In contrast, natural CVF caused decomplementation in all mice only after the first administration. After two additional administrations of natural CVF, decomplementation was inconsistent and varied tremendously from mouse to mouse. After the fourth administration, natural CVF was essentially unable to deplete complement, consistent with the known generation of a neutralizing antibody response. We also analyzed the IgG antibody response to hCVF. There was great variation, with approximately one quarter of the mice exhibiting non-detectable levels of anti-hCVF IgG, and another quarter very low levels. The levels of anti-hCVF IgG did not correlate with the levels of remaining C3. The anti-hCVF antibodies cross-reacted with natural CVF, recombinant CVF, and human C3. Whereas overall the level of anti-hCVF IgG cross-reacting with human C3 was lower compared to rCVF or nCVF, mice with higher levels of anti-hCVF IgG exhibited higher binding to CVF and human C3, excluding the possibility that higher antibody levels reflect preferential immunogenicity of CVF-specific or human C3-specific epitopes.


Assuntos
Anticorpos Neutralizantes/metabolismo , Formação de Anticorpos , Venenos Elapídicos/imunologia , Proteínas Recombinantes de Fusão/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Drosophila melanogaster , Venenos Elapídicos/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão/química
5.
Biosensors (Basel) ; 6(4)2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27999382

RESUMO

Portable detection and quantitation methods for Bacillus anthracis (anthrax) spores in pure culture or in environmental samples are lacking. Here, an amperometric immunoassay has been developed utilizing immunomagnetic separation to capture the spores and remove potential interferents from test samples followed by amperometric measurement on a field-portable instrument. Antibody-conjugated magnetic beads and antibody-conjugated glucose oxidase were used in a sandwich format for the capture and detection of target spores. Glucose oxidase activity of spore pellets was measured indirectly via amperometry by applying a bias voltage after incubation with glucose, horseradish peroxidase, and the electron mediator 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid). Target capture was mediated by polyclonal antisera, whereas monoclonal antibodies were used for signal generation. This strategy maximized sensitivity (500 target spores, 5000 cfu/mL), while also providing a good specificity for Bacillus anthracis spores. Minimal signal deviation occurs in the presence of environmental interferents including soil and modified pH conditions, demonstrating the strengths of immunomagnetic separation. The simultaneous incubation of capture and detection antibodies and rapid substrate development (5 min) result in short sample-to-signal times (less than an hour). With attributes comparable or exceeding that of ELISA and LFDs, amperometry is a low-cost, low-weight, and practical method for detecting anthrax spores in the field.


Assuntos
Bacillus anthracis , Técnicas Biossensoriais , Separação Imunomagnética , Esporos Bacterianos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Bioterrorismo , Eletrodos , Imunoensaio
6.
J Immunol ; 195(11): 5452-60, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26500346

RESUMO

Igs in vertebrates comprise equally sized H and L chains, with exceptions such as H chain-only Abs in camels or natural Ag receptors in sharks. In Reptilia, Igs are known as IgYs. Using immunoassays with isotype-specific mAbs, in this study we show that green turtles (Chelonia mydas) have a 5.7S 120-kDa IgY comprising two equally sized H/L chains with truncated Fc and a 7S 200-kDa IgY comprised of two differently sized H chains bound to L chains and apparently often noncovalently associated with an antigenically related 90-kDa moiety. Both the 200- and 90-kDa 7S molecules are made in response to specific Ag, although the 90-kDa molecule appears more prominent after chronic Ag stimulation. Despite no molecular evidence of a hinge, electron microscopy reveals marked flexibility of Fab arms of 7S and 5.7S IgY. Both IgY can be captured with protein G or melon gel, but less so with protein A. Thus, turtle IgY share some characteristics with mammalian IgG. However, the asymmetrical structure of some turtle Ig and the discovery of an Ig class indicative of chronic antigenic stimulation represent striking advances in our understanding of immunology.


Assuntos
Isotipos de Imunoglobulinas/imunologia , Imunoglobulinas/imunologia , Imunoglobulinas/ultraestrutura , Tartarugas/imunologia , Animais , Anticorpos/imunologia , Anticorpos Anti-Idiotípicos/imunologia , Anticorpos Monoclonais/imunologia , Antígenos/imunologia , Processamento de Imagem Assistida por Computador , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Leves de Imunoglobulina/imunologia , Microscopia Eletrônica de Transmissão/veterinária , Dados de Sequência Molecular , Receptores Fc/imunologia
7.
Toxicon ; 60(4): 632-47, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22609532

RESUMO

Cobra Venom Factor (CVF) is the complement-activating protein in cobra venom. CVF is structurally and functionally highly homologous to complement component C3. CVF, like C3b, the activated form of C3, forms a bimolecular complex with Factor B in serum, called C3/C5 convertase, an enzyme which activates complement components C3 and C5. Despite the high degree of homology, the two C3/C5 convertases exhibit significant functional differences. The most important difference is that the convertase formed with CVF (CVF,Bb) is physico-chemically far more stable than the convertase formed with C3b (C3b,Bb). In addition, the CVF,Bb convertase and CVF are completely resistant to inactivation by the complement regulatory proteins Factor H and Factor I. Furthermore, the CVF,Bb enzyme shows efficient C5-cleaving activity in fluid phase. In contrast, the C3b,Bb enzyme is essentially devoid of fluid-phase C5-cleaving activity. By taking advantage of the high degree of sequence identity at both the amino acid (85%) and DNA levels (93%) between CVF and cobra C3, we created hybrid proteins of CVF and cobra C3 where sections, or only a few amino acids, of the CVF sequence were replaced with the homologous amino acid sequence of cobra C3. In a first set of experiments, we created five hybrid proteins, termed H1 through H5, where the cobra C3 substitutions collectively spanned the entire length of the CVF protein. We also created three additional hybrid proteins where only four or five amino acid residues in CVF were exchanged with the corresponding amino acid residues from cobra C3. Collectively, these hybrid proteins, representing loss-of-function mutants of CVF, allowed the identification of regions and individual amino acid residues important for the CVF-specific functions. The results include the observation that the CVF ß-chain is crucially important for forming a stable convertase, whereas the CVF α-chain appears to harbor no CVF-specific functions. Furthermore, the CVF γ-chain is additionally important for the fluid-phase C5-cleaving activity of CVF,Bb. Interestingly, the structural changes in the individual hybrid proteins differentially affected the molecular functions of the CVF,Bb enzyme such as convertase formation, C3 cleavage, and C5 cleavage.


Assuntos
Complemento C3/química , Venenos Elapídicos/química , Proteínas Recombinantes de Fusão/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Ativação do Complemento , Complemento C3/genética , Convertases de Complemento C3-C5/metabolismo , Fator D do Complemento/química , Venenos Elapídicos/genética , Elapidae/fisiologia , Estabilidade Enzimática , Humanos , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Plasmídeos/biossíntese , Plasmídeos/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética
8.
Dev Comp Immunol ; 33(1): 105-16, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18760301

RESUMO

Cobra venom factor (CVF) is a structural and functional analog of complement C3 isolated from cobra venom. Both CVF and C3b can bind factor B and subsequently form the bimolecular C3/C5 convertases CVF,Bb or C3b,Bb, respectively. The two homologous enzymes exhibit several differences of which the difference in physico-chemical stability is most important, allowing continuous activation of C3 and C5 by CVF,Bb, leading to serum complement depletion. Here we describe the detailed functional properties of two hybrid proteins in which the 113 or 315 C-terminal residues of C3 were replaced with corresponding CVF sequences. Both hybrid proteins formed stable convertases that exhibited C3-cleaving activity, although at different rates. Neither convertase cleaved C5. Both convertases showed partial resistance to inactivation by factors H and I, allowing them to deplete complement in human serum. These data demonstrate that functionally important structural differences between CVF and C3 are located in the very C-terminal region of both homologous proteins, and that small substitutions in human C3 with homologous CVF sequence result in C3 derivatives with CVF-like functions. Such hybrid proteins are important tools to study the structure/function relationships in both C3 and CVF, and these "humanized CVF" proteins may become reagents for therapeutic complement depletion.


Assuntos
Complemento C3/química , Venenos Elapídicos/química , Animais , Clonagem Molecular , Complemento C3/genética , Convertases de Complemento C3-C5/química , Convertases de Complemento C3-C5/genética , Fator H do Complemento/química , Venenos Elapídicos/genética , Fibrinogênio/química , Hemólise , Humanos , Modelos Moleculares , Ligação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Ovinos
9.
Adv Exp Med Biol ; 632: 293-307, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19025130

RESUMO

To obtain proteins with the complement-depleting activity of Cobra Venom Factor (CVF), but with less immunogenicity, we have prepared human C3/CVF hybrid proteins, in which the C-terminus of the alpha-chain of human C3 is exchanged with homologous regions of the C-terminus of the beta-chain of CVF. We show that these hybrid proteins are able to deplete complement, both in vitro and in vivo. One hybrid protein, HC3-1496, is shown to be effective in reducing complement-mediated damage in two disease models in mice, collagen-induced arthritis and myocardial ischemia/reperfusion injury. Human C3/CVF hybrid proteins represent a novel class ofbiologicals as potential therapeutic agents in many diseases where complement is involved in the pathogenesis.


Assuntos
Complemento C3/química , Complemento C3/metabolismo , Complemento C3/uso terapêutico , Proteínas do Sistema Complemento/metabolismo , Animais , Artrite Experimental/tratamento farmacológico , Complemento C3/genética , Venenos Elapídicos/química , Venenos Elapídicos/metabolismo , Humanos , Camundongos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Engenharia de Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/uso terapêutico
10.
J Biol Chem ; 279(29): 30836-43, 2004 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-15131128

RESUMO

Cobra venom factor (CVF) is the complement-activating protein from cobra venom. It is a structural and functional analog of complement component C3. CVF functionally resembles C3b, the activated form of C3. Like C3b, CVF binds factor B, which is subsequently cleaved by factor D to form the bimolecular complex CVF,Bb. CVF,Bb is a C3/C5 convertase that cleaves both complement components C3 and C5. CVF is a three-chain protein that structurally resembles the C3b degradation product C3c, which is unable to form a C3/C5 convertase. Both C3 and CVF are synthesized as single-chain prepro-proteins. This study reports the recombinant expression of pro-CVF in two insect cell expression systems (baculovirus-infected Sf9 Spodoptera frugiperda cells and stably transfected S2 Drosophila melanogaster cells). In both expression systems pro-CVF is synthesized initially as a single-chain pro-CVF molecule that is subsequently proteolytically processed into a two-chain form of pro-CVF that structurally resembles C3. The C3-like form of pro-CVF can be further proteolytically processed into another two-chain form of pro-CVF that structurally resembles C3b. Unexpectedly, all three forms of pro-CVF exhibit functional activity of mature, natural CVF. Recombinant pro-CVF supports the activation of factor B in the presence of factor D and Mg2+ and depletes serum complement activity like natural CVF. The bimolecular convertase pro-CVF,Bb exhibits both C3 cleaving and C5 cleaving activity. The activity of pro-CVF and the resulting C3/C5 convertase is indistinguishable from CVF and the CVF,Bb convertase. The ability to produce active forms of pro-CVF recombinantly ensures the continued availability of an important research reagent for complement depletion because cobra venom as the source for natural CVF will be increasingly difficult to obtain as the Indian cobra is on the list of endangered species. Experimental systems to express pro-CVF recombinantly will also be invaluable for studies to delineate the structure and function relationship of CVF and its differences from C3 as well as to generate human C3 derivatives with CVF-like function for therapeutic complement depletion ("humanized CVF").


Assuntos
Venenos Elapídicos/química , Proteínas Recombinantes/química , Animais , Linhagem Celular , Convertases de Complemento C3-C5/metabolismo , Fator D do Complemento/química , Proteínas do Sistema Complemento/metabolismo , DNA Complementar/metabolismo , Drosophila melanogaster , Escherichia coli/metabolismo , Vetores Genéticos , Glicosilação , Humanos , Insetos/metabolismo , Magnésio/química , Plasmídeos/metabolismo , Conformação Proteica , Relação Estrutura-Atividade , Fatores de Tempo , Tunicamicina/farmacologia
11.
Mol Immunol ; 41(2-3): 191-9, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15159065

RESUMO

Cobra venom factor (CVF) is the complement-activating protein from cobra venom. CVF is a three-chain protein that functionally resembles C3b, the activated form of complement component C3. Like C3b, CVF forms a C3/C5 convertase with factor B in the presence of factor D and Mg(2+). Although CVF exhibits functional activity of C3b, it structurally resembles the C3b degradation product C3c, which is not able to form a C3/C5 convertase. CVF has become an important research tool to decomplement laboratory animals in order to study the role of complement in host defense, immune response, and pathogenesis of disease. As the Asian cobras of the Naja species are on the list of endangered species, cobra venom as the source for CVF has become increasingly difficult to obtain. Methods have been developed to recombinantly produce active forms of CVF. This manuscript reviews the production of recombinant pro-CVF using both prokaryotic and eukaryotic expression systems. The recombinant production of pro-CVF in two insect cell expression systems (baculovirus-infected Sf9 Spodoptera frugiperda cells, stably transfected S2 Drosophila melanogaster cells) generates three forms of pro-CVF: single-chain pro-CVF resembling pro-C3, a two-chain form of pro-CVF resembling C3, and another two-chain form of pro-CVF resembling C3b. All three forms of pro-CVF exhibit functional activity of mature, natural CVF. Recombinant pro-CVF supports the activation of factor B in the presence of factor D and Mg(2+), forms a bimolecular convertase pro-CVF,Bb that exhibits cleaving activity for both C3 and C5, and depletes the serum complement activity. The activity of pro-CVF and the resulting C3/C5 convertase is indistinguishable from CVF and the CVF,Bb convertase. Recombinant production of functionally active forms of pro-CVF ensures the availability of an important research reagent for future research involving complement depletion. The experimental systems to recombinantly produce active forms of CVF will also be invaluable for studies to delineate the structure/function relationship of CVF and its differences from C3, and to generate human C3 derivatives with CVF-like function ("humanized CVF") for therapeutic complement depletion.


Assuntos
Clonagem Molecular/métodos , Venenos Elapídicos/genética , Animais , Ativação do Complemento/efeitos dos fármacos , Venenos Elapídicos/química , Venenos Elapídicos/farmacologia , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...